

Experiences with

Just-in-Time Teaching
in Systems & Design Courses

Janet Davis
Dept. of Computer Science

Grinnell College
Grinnell, Iowa, USA

My Goals for This Talk

● Share my experiences
● Contribute to a small body of literature on

Just-in-Time Teaching in Computer Science
● Advertise!

● It's fun, it's effective, try it!
● Can work for new instructors as well as

experienced.

Outline

● What is Just-in-Time Teaching?
● Prior work in computer science
● Three examples, two approaches

● Assignment
● Lesson planning demonstration
● Student & instructor evaluations

● Conclusion

What is Just-in-Time Teaching?

Learning
in the

Classroom

Learning
outside the
Classroom

What is Just-in-Time Teaching?
[Novak et al. 1999]

Learning
in the

Classroom

Learning
outside the
Classroom

Homework, Projects

WarmUp Exercises

Exercises completed
before class

based on readings
or prior knowledge

What is Just-in-Time Teaching?
[Novak et al. 1999]

Key Idea:

Create or adjust lesson plans
“just in time”

in response to students'
preliminary understandings.

Applications of JiTT to CS

● Bailey & Forbes (SIGCSE 2005) – CS 0
● Astrachan (FIE 2004) – Programming contests
● Fleischer (TLS 2004) – Theory of computation

● What I contribute:
● Experience with different types of courses
● Experience of a new instructor teaching courses for

the first time

Approach 1: Discussion Questions
● Students are asked to write

● Questions concerning terms not defined in the reading,
● Questions to clarify ideas,
● Questions about the relationships between ideas or approaches,
● Questions regarding assumptions behind approaches,
● Questions concerning the motivation or necessity of ideas or protocols.

● Cite a page number from the text

● Operating Systems, 15 students
● Average one question per class for 10% of grade
● Due 5 p.m. for 8 a.m. class

My Class Preparation Process

● Review assigned reading (1-2 days before)
● Gather questions in HTML document (5 p.m.)
● Organize:

● By topic
● Basic → detailed → “big picture,” beyond scope of text

● Sketch lesson plan on paper (later that eve)
● Mainly use whiteboard,

occasionally overheads and handouts,
never PowerPoint!

Student Evaluations –
Approach 1 (OS)

Kudos:
● “helps me think

carefully”
● helps to have a forum

to ask and discuss
questions

● “helps everyone to
contribute”

● “entertaining”

Concerns:
● Frustration about time

questions are due,
reading to assignment

Instructor's Evaluation – Approach 1
Advantages:

● Self-bootstrapping.
● Class prep in brief regular

sessions [Boice 2000].
● Students prepare.
● Address questions &

misconceptions.
● Use class time effectively.
● Engaging, improvised,

conversational, fun!

Disadvantages:
● Prep takes longer than

reusing notes.
● Prep not reusable.
● Need a readable text.
● Less structured.
● May need to work to

break out of lecture mode.

Approach 2: WarmUp Exercises

● “Pre-homework” - problems to be completed or
questions to be answered before class

● Used in
● Software Design, 14 students, 15% of grade
● Human-Computer Interaction, 17 students, 20%

● Completed several hours before each class
● Graded on effort, not correctness

Example assignment: Week 1

0. What, in your experience, makes really BAD software?
1. Brain Power Question, p. 35: Can you think of three
specific ways that well-designed software is easier to
change than software that has duplicate code?
[Head First Object-Oriented Design & Analysis]
2. What's the most important thing you learned from this
chapter?
3. What's one question you still need to answer?
4. About how long did you spend doing the reading and
answering these questions?

Example assignment: Week 2

1. Super Brain Power Question, p. 85: Can you
come up with at least one more alternate path for
Todd & Gina's dog door? Write out the use case &
update the requirements list for your new alternate
path, too. [HF-OOA&D]
2. What's the most important thing you learned from
this chapter?
3. What's one question you still need to answer?
4. We'll (probably) practice developing use cases
and requirements in class. Can you suggest a small
application that would be interesting to think about?

Student Evaluations –
Approach 2 (HCI class)

Kudos:
● Made me do the

readings & think
critically about them

● Helped know where
to focus effort

Concerns:
● Disliked readings
● Seem to not always

address key issues
● Some took longer

than others

Instructor's Evaluation – Approach 2
Advantages:

● Can reuse WarmUps.
● Class prep in brief

regular sessions.
● Give more direction.
● Feed in-class problem

solving as well as
discussion.

● Engaging, improvised,
conversational, fun!

Disadvantages:
● Need to generate

WarmUps.
● Helps to have a text

with good exercises.
● More work to decide

how to use student
responses.

● Need to set student
expectations carefully.

Conclusion

● Try it!
● It's fun.
● It's effective.
● It takes less time than you might think,

especially when preparing a new course.
● “They are like nothing I've encountered in any

of my other classes, but I think it's a great idea.”
● “I wish every class used them.”

Questions?

Janet Davis
Grinnell College

<davisjan@cs.grinnell.edu>

Example assignment: Week 10

1.Which XP practices are already being used by
your team? In what ways?

2.Which practice would you most like to see your
team start using (or significantly improve)?
Why?

3.Which practice seems the least relevant to your
project for this class? Why?

4.What's the most important thing you learned
from this reading?

5.What's one question you still need to answer?

Example Student Questions
My understanding of virtual memory is that it is a simulation of physical
memory (93), and I would therefore say that virtual memory is not "real"
memory. So, how is it possible to store or save information on virtual
space, space that does not even exist in the first place?
I'm a bit confused on the mode bit mentioned around page 96. How can
the bit be changed from user to protected mode? A protected program
cannot change this bit, as to be protected, the bit must already be set. This
means a user space process is changing the mode, but wouldn't that defeat
the purpose of the protection?
I know that one of the major advantages of Linux is that the user can alter
the kernel and recompile to truly customize the OS. How does this fit in
with the trusted aspect of kernel software?
A daemon is a user space thread that seems to implement time or space
multiplexing that the OS usually handles. Shouldn't the OS simply do
what a daemon does?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

